Subject: Abstract Algebra Topic: Group Theory

Dr. Pankaj Kumar Assistant Professor Department of Mathematics, Maharaja Agrasen University, Kalujhanda, Solan (HP) - 173104 Binary Operations: Let A be a non empty set and let * be any operation defined on A. Then, * is said to be a binary operation if $x * y \in A$, $\forall x, y \in A$.

Examples :

- Let R be the set of real numbers then operation of addition (+) is a binary operation on R, because, $x + y \in R, \forall x, y \in R$.
- Let N be the set of natural numbers then operation of addition (+) is a binary operation on N, because, $x + y \in N, \forall x, y \in N$. However, operation of subtraction (-) is not a binary operation on N, because $x y \notin N, \forall x, y \in N$.

For example 2, $5 \in N$ but $2 - 5 = -3 \notin N$.

Algebraic Structure: Let G be a non empty set and * be a binary operation defined on G. Then (G, *) is said to be an algebraic structure.

Examples:

- Addition (+) is a binary operation on the set of real numbers R. Therefore, (R, +) is an algebraic structure.
- Multiplication (\times) is a binary operation on the set of integers Z. Therefore, (Z, \times) is an algebraic structure.
- Division (\div) is a binary operation on the set of non-zero real numbers R_0 . Therefore, (R_0, \div) is an algebraic structure. But Division (\div) is not a binary operation on the set of integers, therefore, (Z, \div) is not an algebraic structure.

Group: Let G be a non empty set and * be an operation defined on G then G is said to be a group with respect to * or (G, *) be a group if the following properties are satisfied:

- 1. Closure property: Let $x, y \in G$ then $x * y \in G$.
- 2. Associativity: Let $x, y, z \in G$ then (x * y) * z = x * (y * z)
- 3. Existence of Identity: There exists an element e (say) in G such that x * e = x and e * x = x. Then, e is called the identity of the group.
- 4. Existence of Inverse: For each element $x \in G$ there exists an element $x^{-1} \in G$ such that $x * x^{-1} = e$. Then x^{-1} is said to be the inverse of x.

Example: The set of integers with respect to addition (Z, +) form a group.

Explanation:

- **1. Closure property:** Let $x, y \in Z$, then $x + y \in Z$. Because sum of two integers again an integer.
- **2.** Associativity: Let $x, y, z \in Z$ then x + (y + z) = (x + y) + z. Because ordering in addition of integers does not matters.
- **3. Existence of Identity:** We know that $0 \in \mathbb{Z}$. Let $x \in \mathbb{Z}$ then 0 + x = x, and x + 0 = x. So, 0 is identity element.
- **4. Existence of Inverse:** Let $x \in Z$ then $-x \in Z$. Now, x + (-x) = 0, thus -x is inverse of x. Thus inverse exists for each element of Z.

Some More Examples:

- (Q, +), (R, +), (C, +) are groups.
- (Q_0, \times) , (R_0, \times) , (C_0, \times) are groups, where $Q_0 = Q \{0\}$ and so on.
- M = { $[a_{ij}]_{n\times n}$: $a_{ij} \in R$ } is a group with respect to addition of matrices.
- The set $Z_n = \{0,1,2,...,n-1\}$ is a group with respect to addition modulo n + n for all values of $n \in N$.

Abelian Group: Let (G, *) be a group, then it is called abelian if $x * y = y * x, \forall x, y \in G$.

Examples:

- (Q, +), (R, +), (C, +) are abelian groups.
- $(Z_n, +_n)$ is a abelian group.
- $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$, where $i.j = k, j.k = i, k.i = j, j.i = -k, k.j = -i, i.k = -j, i^2 = -1, j^2 = -1, k^2 = -1.Q_8$ is a group with respect to multiplication but not an abelian group.

Order of Element: Let (G,*) be a group and $a \in G$. A positive integer m is said to be the order of a if $a^m = e$ and $a^n \neq e$ for n < m. Then, we write o(a) = m. Here, $a^m = a * a * a \dots * a \pmod{m}$.

If no such integer exists then the order of the element is said to be infinity.

Order of identity is always 1 and no other element of the group has order 1, i.e., o(e) = 1.

Examples:

- In the group of non zero real numbers R_0 , 1 is the identity element. So, o(1) = 1. $-1 \in R_0$ and $-1 \times -1 = 1$, so o(-1) = 2.
- Now, let us check for $2 \in R_0$.

 $2 \times 2 = 4$, $2 \times 2 \times 2 = 8$, $2 \times 2 \times 2 \times 2 = 16$ and so on. Thus, we are never going to get identity element 1. Thus in this case, there does not exists any positive integer m such that $2^m = 1$. So, order of 2 is infinite.

Cyclic group: A group (G,*) is said to be cyclic if there exists an element a in G such that all the elements of G can be written in powers of a.

It means, we can write the elements like a, a^2, a^3, \dots

Then a is called generator of the group G.

If a is the generator of a group G then order of a is equal to the order of the group.

Examples:

- (Z, +) is a cyclic group and, 1 and -1 are the generators. It is an example of an infinite cyclic group.
- $(Z_n, +_n)$ is a cyclic group. The numbers relative prime to n are the generators. It is an example of a finite group.
- The order of the generator of cyclic group is always equal to the order of group.

