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Binary Operations: Let A be a non empty set and let ∗ be any operation
defined on A. Then, ∗ is said to be a binary operation if 𝑥 ∗ 𝑦 ∈
𝐴, ∀ 𝑥, 𝑦 ∈ 𝐴.

• Examples :
• Let R be the set of real numbers then operation of addition (+) is a binary

operation on R, because, 𝑥 + 𝑦 ∈ 𝑅, ∀ 𝑥, 𝑦 ∈ R.

• Let N be the set of natural numbers then operation of addition (+) is a
binary operation on N, because, 𝑥 + 𝑦 ∈ 𝑁, ∀ 𝑥, 𝑦 ∈ 𝑁 . However,
operation of subtraction (-) is not a binary operation on N, because 𝑥 − 𝑦 ∉
𝑁, ∀ 𝑥, 𝑦 ∈ N.

For example 2, 5 ∈ 𝑁 𝑏𝑢𝑡 2 − 5 = −3 ∉ 𝑁.



Algebraic Structure: Let G be a non empty set and ∗ be a binary operation defined
on G. Then (G, ∗) is said to be an algebraic structure.

Examples:

• Addition (+) is a binary operation on the set of real numbers R. Therefore, (R, +) is
an algebraic structure.

• Multiplication (×) is a binary operation on the set of integers Z. Therefore, (Z, ×)
is an algebraic structure.

• Division (÷) is a binary operation on the set of non-zero real numbers 𝑅0.
Therefore, (𝑅0, ÷) is an algebraic structure. But Division (÷) is not a binary
operation on the set of integers, therefore, (Z, ÷) is not an algebraic structure.



Group: Let G be a non empty set and ∗ be an operation defined on G then G is said
to be a group with respect to ∗ or (G, ∗) be a group if the following properties are
satisfied:

1. Closure property: Let 𝑥, 𝑦 ∈ 𝐺 then 𝑥 ∗ 𝑦 ∈ 𝐺.

2. Associativity: Let 𝑥, 𝑦, 𝑧 ∈ 𝐺 then 𝑥 ∗ 𝑦 ∗ 𝑧 = 𝑥 ∗ 𝑦 ∗ 𝑧

3. Existence of Identity: There exists an element e (say) in G such that

𝑥 ∗ 𝑒 = 𝑥 𝑎𝑛𝑑 𝑒 ∗ 𝑥 = 𝑥. Then, e is called the identity of the group.

4. Existence of Inverse: For each element 𝑥 ∈ 𝐺 there exists an element

𝑥−1 ∈ 𝐺 such that 𝑥 ∗ 𝑥−1 = 𝑒 . Then 𝑥−1 is said to be the inverse of x.



Example: The set of integers with respect to addition (Z, +) form a group.

Explanation:

1. Closure property: Let 𝑥, 𝑦 ∈ 𝑍 ,  then 𝑥 + 𝑦 ∈ 𝑍. Because sum of two integers 
again an integer. 

2. Associativity: Let 𝑥, 𝑦, 𝑧 ∈ 𝑍 then 𝑥 + 𝑦 + 𝑧 = 𝑥 + 𝑦 + 𝑧. Because 
ordering in addition of integers does not matters.

3. Existence of Identity:  We know that 0 ∈ 𝑍. Let 𝑥 ∈ 𝑍 then

0 + 𝑥 = 𝑥, and  𝑥 + 0 = 𝑥 . So, 0 is identity element. 

4. Existence of Inverse: Let 𝑥 ∈ 𝑍 then −𝑥 ∈ 𝑍. Now, 𝑥 + −𝑥 = 0, thus −𝑥 is

inverse of 𝑥. Thus inverse exists for each element of 𝑍.



Some More Examples: 

• (Q, +), (R, +), (C, +) are groups.

• (𝑄0, ×), (𝑅0, ×), (𝐶0, ×) are groups, where 𝑄0 = 𝑄 − 0 and so on. 

• M = {[𝑎𝑖𝑗]𝑛×𝑛: 𝑎𝑖𝑗 ∈ R} is a group with respect to addition of matrices.

• The set 𝑍𝑛 = 0,1,2, ……𝑛 − 1 is a group with respect to addition 
modulo n (+𝑛) for all values of 𝑛 ∈ 𝑁.



Abelian Group: Let (G, ∗) be a group, then it is called abelian if 𝒙 ∗ 𝒚 = 𝒚 ∗ 𝒙, ∀ 𝒙, 𝒚 ∈ 𝑮 .

Examples:

• (Q, +), (R, +), (C, +) are abelian groups.

• (𝑍𝑛, +𝑛) is a abelian group.

• 𝑄8 = 1,−1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘 , where 𝑖. 𝑗 = 𝑘, 𝑗. 𝑘 = 𝑖, 𝑘. 𝑖 = 𝑗, 𝑗. 𝑖 = −𝑘, 𝑘. 𝑗 =
− 𝑖, 𝑖. 𝑘 = −𝑗, 𝑖2 = −1, 𝑗2 = −1, 𝑘2 = −1.𝑄8 is a group with respect to 
multiplication but not an abelian group. 



Order of Element: Let (𝑮,∗) be a group and 𝒂 ∈ 𝑮. A positive integer m is said to be 
the order of 𝒂 if 𝒂𝒎 = 𝒆 and 𝒂𝒏 ≠ 𝒆 for 𝒏 < 𝒎. Then, we write 𝒐 𝒂 = 𝒎.
Here, 𝒂𝒎 = 𝒂 ∗ 𝒂 ∗ 𝒂………… .∗ 𝒂 (𝒎 𝒕𝒊𝒎𝒆𝒔).

If no such integer exists then the order of the element is said to be infinity. 

Order of identity is always 1 and no other element of the group has order 1,
i.e., 𝒐 𝒆 = 𝟏. 



Examples:

• In the group of non zero real numbers 𝑅0 , 1 is the identity element. So, 𝑜 1 = 1. 
− 1 ∈ 𝑅0 and −1 × −1 = 1, so 𝑜 −1 = 2. 

• Now, let us check for 2 ∈ 𝑅0. 

2 × 2 = 4, 2 × 2 × 2 = 8, 2 × 2 × 2 × 2 = 16 and so on. Thus, we are never 
going to get identity element 1. Thus in this case, there does not exists any positive 
integer 𝑚 such that 2𝑚 = 1. So, order of 2 is infinite. 



Cyclic group: A group 𝑮,∗ is said to be cyclic if there exists an element 𝒂 in G such 
that all the elements of G can be written in powers of 𝒂. 

It means, we can write the elements like 𝒂, 𝒂𝟐, 𝒂𝟑, ……… . 

Then 𝒂 is called generator of the group G. 

If 𝒂 is the generator of a group G then order of 𝒂 is equal to the order of the group.



Examples:

• (Z, +) is a cyclic group and, 1 and -1 are the generators. It is an example of an 
infinite cyclic group. 

• (𝑍𝑛, +𝑛) is a cyclic group. The numbers relative prime to n are the generators.  It 
is an example of a finite group. 

• The order of the generator of cyclic group is always equal to the order of group. 
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